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6.1. Introduction

In biology, as well as in other branches of science and technology, there is a steady
trend towards the use of more variables (properties) to characterize observations (e.g.
samples, experiments, time points). Often, these measurements can be arranged into
a data table, where each row constitutes an observation and the columns represent
the variables or factors we have measured (e.g. intensities at a specific wavelength,
mass-to-charge ratio, NMR chemical shift). This development generates increasingly
complex data tables, which are hard to summarize and overview without appropriate
tools. Thus, in this chapter we will try to guide the reader through a chemometrical
approach for extracting information out of data.

Chemometrics is an established field in data analysis [1–3] and has proven valu-
able in the analysis of “omics” data in many applications [4–10]. It includes efficient
and robust methods for modelling and analysis of complicated chemical/biological
data tables that produce interpretable and reliable models capable to handle incom-
plete, noisy and collinear data structures. These methods include principal compo-
nent analysis [11] (PCA) and partial least squares [12–15] (PLS). Chemometrics also
provides a means of collecting relevant information through statistical experimental
design [16–18]. Therefore, chemometrics can be defined as the information aspect
of complex biological and chemical systems.

Chemometrics has grown into a well-established data analysis tool in areas such
as multivariate calibration [19, 20] quantitative structure-activity modeling [21, 22],
pattern recognition [23–25] and multivariate statistical process monitoring and control
[26–28]. Although seemingly diverse disciplines, the common denominator in these
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application areas are that high complexity data tables are generated and that these can
be analysed and interpreted by means of chemometric methods. However, in biology,
chemometric methodology has been largely overlooked in favour of traditional statis-
tics. It is not until recently that the overwhelming size and complexity of the “omics”
technologies has driven biology towards the adoption of chemometric methods.

There are two main categories of metabonomic studies:

1. Class specific studies, for example disease diagnosis or toxicological classification
2. Dynamic studies, for example the temporal progression of a treatment.

The common theme is that design of experiments (DOE) is used in combination with
multivariate analysis (MVA). A brief introduction to the chemometrical approach,
DOE and MVA will be given and later illustrated by an example.

6.1.1. Making data contain information – Design of Experiments

The metabonomics approach is more demanding on the quality, accuracy and rich-
ness of information in data sets. The DOE [16, 17] is recommended to be used
through the whole process, from defining the aim of the study to the final extraction
of information.

The objective of experimental design is to plan and conduct experiments in order
to extract the maximum amount of information in the fewest number of experimental
runs. The basic idea is to devise a small set of experiments, in which all pertinent
factors are varied systematically. This set usually does not include more than 10 to
20 experiments. By adding additional experiments, one can investigate factors more
thoroughly, for example the time dependence from 2 to 5 time points. In addition,
the noise level is decreased by means of averaging, the functional space is efficiently
mapped and interactions and synergisms are seen.

6.1.2. Extracting information from data – Overview and classification

In metabonomic studies, the observations and samples are often characterized using
modern instrumentation such as gas chromatography-mass spectrometry (GC-MS),
liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance
(NMR) spectroscopy. The analytical platform is important and largely determined
by the biological system and the scientific question. Multivariate analyses based
on projection methods represent a number of efficient and useful methods for the
analysis and modelling of these complex data. The PCA [11] is the workhorse
in chemometrics. Using PCA it is possible to extract and display the systematic
variation in the data. A PCA model provides a summary or overview of all obser-
vations or samples in the data table. In addition, groupings, trends and outliers can
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also be found. Hence, such projection-based methods represent a solid basis for
metabonomic analysis. Canonical correlation [29], correspondence analysis [30],
neural networks [31, 32], Bayesian modeling [33] and hidden Markov models [34]
represent additional modelling methods but are outside the scope of this chapter.

6.1.3. Investigating complicated relationships – Discrimination and prediction

Metabonomic studies typically constitute a set of controls and treated samples,
including additional knowledge of the samples, for example dose, age, gender and
diet. In these situations, it is possible for a more focussed evaluation and analysis
of the data. That is, rather than asking the question “what is there?”, one can start
to ask, “what is its relation to?” or “what is the difference between?”. In modelling,
this additional knowledge constitutes an extra data table, that is a Y matrix. The
(PLS) [14] and Orthogonal-PLS [35–38] (OPLS) represent two modelling methods
for relating two data tables. The Y data table can be both quantitative (e.g. age, dose
concentration) and qualitative (e.g. control/treated) data.

6.2. Chemometric approaches to metabonomic studies

The underlying philosophy of chemometrics in combination with the chemometric
toolbox can efficiently be applied throughout a metabonomic study. This philosophy
is useful from the start of a study (defining the aim) through the whole process to
the biological interpretation. This strategy is described step by step below.

6.2.1. Step 1 Definition of aim

It is important to formulate the objectives and goals of the metabonomic study.

• What is previously known?
• What additional information is needed to be known?
• How to reach the objectives, that is what experiments are needed and how to

perform them?

6.2.2. Step 2 Study design

6.2.2.1. Class specific studies
The traditional approach to metabonomic disease diagnosis is to identify a group
of control observations and another group of observations known to have a specific
disease. What is not taken into account is that they may have other, not diagnosed
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diseases or conditions. Hence, in modelling, disease diagnosis can be regarded as
either a two-class or a one-class problem.

Two-class problem: Disease and control observations define two separate classes.
One-class problem: Only disease observations define a class, control samples are
too heterogeneous, for example due to other variations caused by diseases, gender,
age, diet, lifestyle, genes, unknown factors and so on.

6.2.2.2. Dynamic studies
Metabonomic studies that involve the quantification of the dynamic metabolic
response are best evaluated using sequential sampling over an appropriate time
course. The evaluation of human biofluid samples is further complicated by a high
degree of normal physiological variation caused by genetic and lifestyle differences.
Dynamic sampling makes it possible to evaluate and handle the different types of
variations such as individual differences in metabolic kinetics, circadian rhythm and
fast and slow responders.

6.2.3. Step 2a – Selection of objects

The selection of the objects (e.g. individuals, rats or plants) needs to span the
experimental domain in a balanced and systematic manner. To be able to do this,
we have to characterize the objects with both measured and observed descriptors.
This often includes setting up specific inclusion and exclusion criteria for the study,
such as age span (e.g. 18–45 years), body mass index (e.g. 20–30), medicinal
chemistry profiles (e.g. lipids, glucose), gender, tobacco habits and use of drugs. In
addition to those criteria, additional information regarding each object is collected
by questionnaires that include life style factors, food and drinking habits, social
situation and so on. This collected information represents a multivariate profile (with
K descriptors) for each object that is a fingerprint of its inherent properties.

Geometrically, the multivariate profile represents one point in K-dimensional
space, whose position (coordinates) in this space is given by the values in each
descriptor. For multiple profiles, it is possible to construct a two-dimensional data
table, an X matrix, by stacking each multivariate profile on top of each other. The
N rows then produce a swarm of points in K-dimensional space, see Figure 6.1.

6.2.3.1. Projection-based methods
The main, underlying assumption of projection-based methods is that the system or
process under consideration is driven by a small number of latent variables (LVs)
[39]. Thus projection-based methods can be regarded as a data analysis toolbox,
for indirect observation of these LVs. This class of models are conceptually very
different from traditional regression models with independent predictor variables.
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x2 = glucose x3 = body mass indexx1 = age

x1 x2

x2 = glucose

x3 = BMI

x1 = age

x3

Visualisation of a data table

Figure 6.1. Each row (e.g. object or observation) in a K-dimensional data table (here with K = 3
variables, designated x1� x2� x3) can be represented as a point in a K-dimensional space (here one point
in a three-dimensional space). The coordinates for each object in this multi-dimensional space are
given by its three variables, that is a multivariate profile. A data table with N rows then corresponds
to a swarm of points. Points that are close to each other have more similar properties than points that
lie far apart.

They are able to handle many, incomplete and correlated predictor variables in a
simple and straightforward way, hence their wide use.

Projection methods convert the multi-dimensional data table into a low-
dimensional model plane that approximates all rows (e.g. objects or observations) in
X, that is the swarm of points. The first PCA model component �t1p1

T � describes the
largest variation in the swarm of points. The second component models the second
largest variation and so on. All PCA components are mutually linearly orthogo-
nal, see Figure 6.2. The scores �T� represent a low-dimensional plane that closely
approximates X, that is the swarm of points. A scatter plot of the first two score
vectors �t1 − t2� provides a summary or overview of all observations or samples
in the data table. Groupings, trends and outliers are revealed. The position of each
object in the model plane is used to relate objects to each other. Hence, objects that
are close to each other have a similar multivariate profile, given the K descriptors.
Conversely, objects that lie far from each other have dissimilar properties.

Analogous to the scores, the loading vectors �p1� p2� define the relation among the
measured variables, that is the columns in the X matrix. A scatter plot, also known
as the loading plot, shows the influence (weight) of the individual X-variables in
the model. An important feature is that directions in the score plot correspond to
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x1 x2

x2

x1

x3

x1

x2 x3

p1

p2

t2

t1

Observation i

Plane

Scores (observations)

Loadings (variables)

PCA

PCA

Comp 1 (t1)

Comp 2 (t2)

Projection

x3

Figure 6.2. A principal component analysis (PCA) model approximates the variation in a data table
by a low dimensional model plane. This model plane represents a two-dimensional projection of the
multi-dimensional data and provides a score plot, where the relation among the observations or samples
in the data table is visualized, for example if there are any groupings, trends or outliers. The loadings
plot describes the influence of the variables and the relation among them. An important feature is that
directions in the score plot correspond to directions in the loading plot, and vice versa.

directions in the loading plot, for example for identifying which variables (load-
ings) separate different groups of objects (the scores). This is a powerful tool for
understanding the underlying patterns in the data. Hence, projection-based methods
represent a solid basis for metabonomic analysis.

The part of X that is not explained by the model forms the residuals �E� and
represents the distance between each point in K-space and its projection on the
plane. The scores, loadings and residuals together describe all of the variation in X.

X = TPT +E = t1p1
T + t2p2

T +E

6.2.3.2. Multivariate design
The need and usefulness of experimental design in complex systems should be
emphasized, because it creates a controlled setting of the environment even though
most of the variation between the different objects is uncontrolled. Multivariate
design (MVD) [40, 41] is a combination of multivariate characterisation (MVC)
[42–44], principal component analysis (PCA) and Design of Experiments (DOE) to
select a diverse set of objects that represent all objects, that is spans the variation.
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1
2
3
4

Multivariate design

Object t1
– –

–+
–

+ +

+

t 2 4

2

0

–2

–4

–4 –3 –2 –1 0
t [1]

1 2 3 4 5–5

Figure 6.3. Four objects are selected according to a multivariate design that span the model variation.

There is a number of different experimental designs that can be applied to span the
variation in a systematic way and to obtain well-balanced data. The most commonly
used are factorial designs [17] and D-optimal design [45] that fulfil the criteria of
balanced data and orthogonality. In MVD, the principal component model scores,
for example, t1 and t2 are used to select the objects, see Figure 6.3. The selection is
based on diversity between the objects.

6.2.4. Step 2b Dynamic sampling

Biological processes are dynamic by nature, that is there is a temporal progression.
Some problems are caused by quick and slow responders following intervention
or treatment. For this reason, the study design is laid out as sequential samples
over an appropriate time course to capture individual trajectories. Sampling period
and interval is based on the expected or known pharmaco-kinetics of the expected
effect. In other words, design of experiments is used to maximize the information
content and increase the chances of capturing all possible variations of responses.
This allows flexibility to the subsequent analysis and an unbiased evaluation of each
individual’s kinetic profile. This also implies that the often assumed control (or pre-
dose) and treated modelling approach is not optimal, as it fails to take into account
the individual dynamics, for example slow and fast responders. In addition, for
dynamic studies the traditional control group does not exist. Instead, each individual
(object) is its own reference control.

6.2.5. Step 3 Sample preparation and characterisation

In metabonomics, it is important to keep the experimental and biological variation at
a minimum. At the same time, the metabolic analysis should be global, quantitative,
robust, reproducible, accurate and interpretable. In addition, the physico-chemical
diversity of metabolites (amino acids, fatty acids, carbohydrates and organic acids)
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raises problems for extraction and working up procedures for different analytical
techniques. Here, design of experiments represents an important strategy to
systematically investigate factors and optimize the experimental protocols. Typical
working up procedures for NMR spectroscopy for biofluids and tissue extraction
is found in Appendix 4, in the SMRS Policy document [46]. For GC-MS, see
References [4, 5].

6.2.6. Step 4 Evaluation of the collected data

In contrast to a 1H-NMR spectrum, data collected from hyphenated instruments
such as GC-MS, LC-MS and UPLC-NMR must be processed more extensively
before multivariate analysis. The reason is the two-dimensional nature (e.g. chro-
matogram/mass spectra) of the data for each sample. Curve resolution or decon-
volution methods are mainly applied for data processing [47–50] that result in a
multivariate profile for each sample. Since a variable in a data table should define the
same property over all samples, variability in NMR peak shifts also cause problems
for statistical modelling. Because of this, a multitude of different peak alignment
methods have been developed [51, 52]. Typically, alignment methods rely upon
having a master or reference profile.

Projection-based methods are sensitive to scaling of the variables. Scaling of
variables changes the length of each axis in the K-dimensional space. The primary
objective of scaling is to reduce the noise in the data, and thereby enhance the
information content and quality. Column centring, whereby the mean trajectory is
removed from the data, is followed by either no scaling or pareto scaling of the
variables. Pareto scaling is recommended for metabonomic data and is done by
dividing each variable by the square root of its standard deviation.

Principal component analysis is used to get an overview of the multivariate
profiles. Examining the scatter plot of the first two score vectors �t1 − t2� reveals
the homogeneity of the data, any groupings, outliers and trends. Strong outliers are
found as deviating points in the scatter plot. The Hotelling’s T2 region, shown as
an ellipse in Figure 6.4 (left), defines the 95% confidence interval of the modelled
variation [53]. Outliers may also be detected in the model residuals. The distance to
model plot [3] (DModX) can be used and is a statistical test for detecting outliers
based on the model residual variance, see Figure 6.4 (right).

Interesting individual observations such as outliers can be examined and inter-
preted by the contribution plot [54]. It displays the weighted difference between the
observation and the model centre. Hence, we can identify what is unique (deviating)
for an observation compared to “normality”. Similarly, the contribution plot can
also be used for comparing different observations.

In the scores plot, Figure 6.5, two groupings are observed (yellow boxes and blue
circles). Examining the scatter plot of the first two loading vectors �p1 −p2� reveals
the relation among the variables. In addition, directions in the scores plot correspond
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Figure 6.4. In the score plot (left figure), the model is defined by the Hotelling’s T 2 ellipse (95% con-
fidence interval) and observations outside the confidence ellipse are considered outliers. Outliers can
also be detected by the distance to model parameter, DModX, based on the model residuals (right figure).

Scores plot
(observations)

Loadings plot
(variables)

Correlation loadings plot
(variables)

t2

t1

x1

x2

x3

p1

p2

p1

x1

x2 x3

p2

Figure 6.5. The scores plot, the loadings plot and the correlation loadings plot are shown for the
first two model components. The scores plot displays an overview of the relationship between the
observations (e.g. samples). The loadings plot shows the covariance between each individual variable
and the score components. The correlation loadings plot display the correlation between each variable
and the score components.
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to directions in the loadings plot. This provides the ability to interpret the way the
variables are related to a pattern or observations found in the scores plot. This is a
powerful tool for understanding the underlying structures in the data.

In Figure 6.5. the loadings plot shows that the variable x1 is positively correlated
to the group marked with yellow boxes, and negatively correlated to the group
marked with blue circles. Conversely, variable x3 is positively correlated to the
group with blue circles and negatively correlated to the group marked with yellow
boxes. A complementary plot to the loadings plot is the correlation loadings plot in
Figure 6.5. It reveals the correlation of each variable to the score components in the
model. The correlation loadings plot is not dependant upon the scale or size of the
variable contrary to the loadings plot.

The loadings plot in Figure 6.5 shows that the x1 variable has a similar distance
from the origin as the x3 variable. However, in the correlation loadings plot, the
x1 variable has a stronger correlation than the x3 variable. This means that the
x1 variable has both strong covariance (given by the loadings plot) and strong
correlation (given by the correlation loadings plot) with the first two model score
components, compared to the x3 variable.

Compared to the loadings plot, the correlation loadings plot is scale independent.
The prior knowledge gained in Step 2 (Study Design) gives us the ability to

separate the observations in at least two different classes. For instance, observations
diagnosed with disease vs another group of observations not having the disease.
However, knowledge of different types of variations in the collected data can be
handled either separately or jointly.

6.2.7. Soft Independent Modelling of Class Analogy

The Soft Independent Modelling of Class Analogy (SIMCA) [25] method is a
supervised classification method based on PCA. The idea is to construct a separate
PCA model for each known class of observations. These PCA models are then
used to assign the class belonging to observations of unknown class origin by the
prediction of these observations into each PCA class model where the boundaries
have been defined by the 95% confidence interval. Observations that are poorly
predicted by the PCA class model, hence have large residuals, are classified being
outside the PCA model and do not belong to the class.

The SIMCA model, as shown in Figure 6.6 (left), illustrates only one class
of observations with strong homogeneity and is well modelled by PCA. This is
commonly referred to as the asymmetric case. In Figure 6.6 (right), there are
two homogenous classes of observations, each separately modelled by PCA. New
observations are predicted into each model, and assigned as belonging to either of
the classes, none of the classes or both of the classes.
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x2
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x1

x2

x1

x3

Figure 6.6. Illustration of SIMCA classification. In the left figure, the one class classifier is shown,
referred to as the asymmetric case. In the right figure, the SIMCA classification is shown with two
classes, separately modelled by PCA.

6.2.8. Partial least squares method by projections to latent structures

The PLS [12–15] is a method commonly used where a quantitative relationship
between two data tables X and Y is sought between a matrix, X, usually compris-
ing spectral or chromatographic data of a set of calibration samples, and another
matrix, Y , containing quantitative values, for example concentrations of endogenous
metabolites (Figure 6.7). The PLS can also be used in discriminant analysis, that is
PLS-DA. The Y matrix then contains qualitative values, for example class belonging,
gender and treatment of the samples. The PLS model can be expressed by:

Model of X� X = TPT +E

Model of Y� Y = TCT +F

Figure 6.7. Class information can also be used to construct an additional matrix, hereinafter called the
Y matrix, consisting of a discrete ‘dummy’ variable where [1]/[0] indicates the class membership.
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The PLS models are negatively affected by systematic variation in the X matrix
that is not related to the Y matrix, that is that is not part of the joint correlation
structure between X − Y . This leads to some pitfalls regarding interpretation and
has potentially major implications in our selection of metabolite biomarkers, for
example positive correlation patterns can be interpreted as negligible or even become
negative.

6.2.9. The Orthogonal-PLS method

The OPLS [35] method is a recent modification of the PLS method [14]. The main
idea of OPLS is to separate the systematic variation in X into two parts, one that is
linearly related to Y and one that is unrelated (orthogonal) to Y . This partitioning of
the X-data facilitates model interpretation and model execution on new samples [35].
The OPLS model comprises of two modelled variations, the Y -predictive �TpP

T
p �

and the Y -orthogonal �ToP
T
o � components. Only the Y -predictive variation is used

for the modelling of Y �TpC
T
p �.

Model of X� X = TpP
T
p +ToP

T
o +E

Model of Y� Y = TpC
T
p +F

E and F are the residual matrices of X and Y respectively. The OPLS can, anal-
ogously to PLS-DA, be used for discrimination (OPLS-DA), see, for instance,
Reference [55]. In Figure 6.8, it is shown how additional knowledge, the Y matrix
(e.g. gender), is used in the modelling to identify directions in the X model that
relate X to Y .

Example study: A food supplement study with dynamic sampling

Step 1 Definition of aim
Investigate the effects on humans of a food supplement by NMR-based metabo-
nomics. [This needs a few sentences to expand the study details, for example nature
of the diet, how many patients, whether plasma or serum was used, type of NMR
spectra – CPMG or other type?]

Step 2 Study design
Potential study objects were screened two weeks before the start of the study with a
number of inclusion and exclusion criteria (e.g. gender, BMI, age, clinical chemistry)
and a questionnaire to provide more in-depth information about lifestyle habits. The
information was collected as a multivariate profile of each individual. A PCA was
performed on the collected data, followed by an experimental design to select a
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O-PLS model

Comp 2, t 2o

Comp 1, t 1p

x2

x3

x1

Figure 6.8. A geometrical illustration of the OPLS-DA model. Component 1 �t1p� is the predictive
component and displays the between-class ([blue circles], [yellow squares]) variation of the samples.
The corresponding loading profile can be used for identifying variables important for the class sepa-
ration. Component 2 �t2o� is the Y -orthogonal component and models the within group (intra-class)
variation.

diverse set of objects. Four objects were selected, in agreement with a multivariate
design; see Figure 6.3, for a deeper analysis of a few specific endogenous metabo-
lites. A dynamic study design was laid out for all of the objects whereby a blood
sample was withdrawn at each visit and the plasma prepared, see Figure 6.9.

Study design

Time 

Sampling period

1 Screening V1 V2 V3 V4 V5

2 Screening V1 V2 V3 V4

Figure 6.9. Four or five sampling times were set up for the two different sampling periods. The
dynamic sampling increases the detection of effect and object differences in metabo-kinetics, for
example from slow and fast responders.
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Step 3 Sample preparation and characterization
Working up and sample preparation was done according to Standard Operating
Procedures (SOP), see References [4, 5, 46].

Step 4 Evaluation of the collected data
Prior to all modelling, column centering was applied to the NMR spectral data.
Following this, a PCA model was calculated, to obtain an overview of the data. The
scores plot �t1-t2�, shows a summary of all samples and this clearly separates the
two different sampling periods, see Figure 6.10.

The corresponding loading plot �p1-p2� indicated that there was a problem with
peak alignment between the two sampling periods. A line plot of all NMR spectra
confirms that this was indeed the case. In addition to the alignment problem, there
are also major amplitude differences, see Figure 6.11. Alignment methods can be
used to correct for the differential chemical shifts observed. Here, a covariance
alignment method was applied.

Following alignment, a new PCA model showed that there still was a separation
between each of the two sampling periods, although with minor overlap. Subtracting
the screening NMR spectrum from each individual can reduce the amplitude differ-
ences between the sampling periods. This is due to the fact that we are interested

3,0009

2,0009

1,0009

0,0000

–1,0009

–2,0009

–3,0009

–3,0009 –2,0009 –1,0009

PCA model scores (t1-t2), All samples

0,0000

t [1]

R2X[1] = 0, 44
Ellipse: Hotelling T2 (0, 95)

R2X[2] = 0, 37

t [
2]

1,0009 2,0009 3,0009

Figure 6.10. PCA scores plot �t1-t2� of the NMR spectra shows a clear separation between the sampling
periods where black squares represent the first sampling period, and red circles the second period.
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40 000 000

NMR spectra, 2.3–2.55 ppm

20 000 000

2,54 2,52 2,50 2,48 2,46 2,44 2,42 2,40 2,38 2,36 2,34 2,32 2,30

ppm

Figure 6.11. NMR spectra from both sampling periods clearly show the reason for the found separation
in the score scatter plot.

2,0009

0,0000

1,0009

–1,0009

–2,0009

–4,0009 –2,0009

PCA model (t1-t2), Screen

0,0000

t [1]

t [
2]

2,0009 4,0009

Figure 6.12. PCA score plot �t1-t2� after subtraction of the NMR screening sample from each individ-
ual. As shown in the plot this has corrected for the groupings due to different studies.

in modelling the effect of treatment for each individual over time. Again, a PCA
model was calculated and its scores plot is found in Figure 6.12.

However, a greater inter-person than intra-person variation is still observed. Each
colour corresponds to a different person.

The subtraction of the screening sample helped remove the separation between
the sampling periods. However, there is still a problem in that the inter-person
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1,0009

0,0000

5,0009

–5,0008

–1,0009

–2,0009 –1,0009

PCA model (t1-t2), Mean

0,0000

t [1]

t [
2]

1,0009 2,0009

Figure 6.13. As shown in the PCA score plot �t1-t2�, the systematic differences between objects
and sampling periods have been removed by individual mean centring. Each colour corresponds to a
different person.

variation is greater than the intra-person variation. This has an adverse influence on
evaluating the effect of treatment over all objects. This is also an indication that
the screening sample may not be a useful reference sample. One plausible reason
may be due to the relatively long time period between the screening sample and the
start of the study. It is important that the reference sample used is a biologically
equivalent reference point for each object, if not, systematic differences between
objects will exist. Hence, the average NMR spectrum for each object was used as
their reference point, and the screening sample was excluded from further analysis.

The scores plot of the updated PCA model no longer displays any systematic
differences between objects or sampling periods (see Figure 6.13).

However, it becomes clear that all individuals do not have the same behaviour
over time following treatment. A number of reasons can exist, for example the
absolute effect between individuals can be large, hence those with lower response
will be suppressed in the model due to the scale-sensitivity of projection-based
models such as PCA. Another reason can be that different individuals have different
dynamic responses to treatment, for example quick and slow responders where the
main effect for one individual occurs between time point 2 and 3, and for another
person between time points 3 and 4.

One way to solve this problem is to create local or separate PCA models for
each object, in order to identify the largest effect from start of sampling period
(pre-dose). The assumption is that the largest change also reveals the largest effect
of treatment. Hence, in the PCA scores plot for each object (individual) (shown in
Figure 6.14), a direction of maximum change from the pre-dose sample is identified
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Figure 6.14. On the left, individual trajectories are shown, wherein the largest change over time can
be identified. On the right, the OPLS loading profile of the predictive component for each individual
is shown. (Continued)
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Figure 6.14. (Continued)

for one or several time points by assigning them with a discrete value of one (1), and
all others, including the pre-dose sample with the value of zero (0). Following this,
an OPLS-DA model was calculated in order to estimate the discriminating loading
vector. This was repeated for all objects. The collective set of loading profiles are
used to assign similarities between objects. For a summary of the loading vectors,
see Figure 6.14.

A visual assessment of the OPLS-DA loading profiles, with lactate as the largest
peak, shows two separate groups of profiles with opposite sign of the profile.
Individuals 1, 2 and 5 represent one group of loading profiles and the others,
individuals 3, 4, 6, 7, 8 and 9 make up for the second group. Here it should be
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strongly emphasized that one should make sure that this observed grouping is not
due to the sampling periods, but rather to some underlying phenomenon.

In order to further validate the model, an OPLS-DA model was calculated, based
on individuals 3 and 4 only. Those individuals have the most pronounced change
in the PCA scores plot, and in addition, they also represent a slow and fast respon-
der (maximum change is seen at different time points, see Figure 6.14). Individuals
6, 7, 8 and 9 were all excluded and used as an external prediction set. The observed
vs predicted plot for the model and the prediction set is given in Figures 6.15, 6.16
respectively. The discriminate line (y-value of 0.25 given by the average of the y-vector
used in the OPLS-DA model) means that only one sample is wrongly predicted!

It has to be emphasized that these groupings reflect the maximum change in the
PCA model scores, and not necessarily the expected biological effect of treatment.

Early on in this study, four individuals were selected in agreement with a MVD
for quantification of a few specific endogenous metabolites by HPLC analysis.
Unfortunately, the most prominent metabolite in the loading profile, lactate, was not
included as one of those metabolites. As a next step, OPLS modelling was performed
with one of those endogenous metabolites as Y and their corresponding NMR
measurements as X. Prior to modelling, the average of the endogenous metabolite
for each person was removed in the Y -vector.

Individuals 5 and 6 were selected to establish a calibration model between the
NMR-spectra and the quantitative measurements. A good model was obtained
showing a fair correlation between the quantified concentrations of the metabolite
and the calculated concentration (RMSEE = 0.19) see Figure 6.17.

–0,1

1,0

0,8

0,6

0,4Y
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ar

0,2

0,0
4 v1
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3_v3 4_v4

3_v1

0,0 0,1 0,2 0,3 0,4

Observed vs Predicted (model)
Individuals 3 and 4

0,5

Y Pred[1]

RMSEE = 0,12

0,6 0,7 0,8 0,9 1,0 1,1

_v2

Figure 6.15. The OPLS-DA model shows a clear discrimination between samples having an observed
effect to those where no effect was found.
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Figure 6.16. The OPLS-DA model predictions of an external test set resulted in only one wrongly
predicted sample �6_v3�.
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Figure 6.17. The quantified concentrations vs the calculated concentrations of the metabolite by the
OPLS calibration model.

The calibration model was used for predictions of the metabolite concentration,
for individual 1 and 8 at different time points, from the corresponding NMR-spectra.
The predictions obtained vs the quantified metabolite concentration is shown in
Figure 6.18. As shown in the figure the calibration model could be used for prediction
of new samples with a good result. This indicates that we have identified relevant
changes depending on treatment in at least one of the endogenous metabolites by
using NMR-spectra.
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Figure 6.18. The OPLS model predictions of an external test set. The observed quantified concentra-
tions are plotted vs the predicted concentrations of the endogenous metabolite.

6.3. Summary

In this chapter we have tried to guide the reader through a chemometrical approach
for extracting information out of complex metabonomic data and this has been
illustrated by an example. Wherein the most important findings are the usefulness of
dynamic sampling, which provided us with an opportunity to identify slow, medium
or fast responders as well as groups of objects showing different response profiles.
By using this information all through the evaluation of the data, predictive models
could be build on a small number of objects and finally validated by test sets. In the
last part of the example we build a calibration model, wherein the NMR-profiles
are used as the descriptor and a quantified metabolite was used as response. The
endogenous metabolite was quantified by HPLC. This model was validated by an
external test set.

The suggested chemometric approach to metabonomic studies is summarized in
the following steps;

Step 1: Definition of aim
What is previously known?
What is needed to know?
How to reach those objectives?
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Step 2: Study design
Class specific studies

Objects or observations (e.g. samples) selected need to span the experimental
domain, in a balanced and systematic manner

Apply multivariate design when selection of objects is possible
Dynamic studies (investigate temporal progression)

Sampling over time
Step 3: Sample preparation and characterisation

Experimental protocol/Analytical technique
Step 4: Evaluation of the collected data

Data processing, for example GC-MS, LC-MS, LC-NMR
Overview – PCA
Classification/Discrimination – SIMCA method & OPLS-DA

One-class classifier (Control heterogenous)
Two-class classifier (Control class, Treated class)

Prediction and biomarker identification

Finally we like to add a short list of questions that always should be asked of a
data table independent of approach and/or methods used.

Questions about samples and observations (score plots)
Are there any outliers?
Are there groups and/or trends?
Are there similarities/dissimilarities between samples?
How do new samples behave?

Questions about variables (loading plots)
Which variables cause outliers?
Which variables are responsible for groupings and/or trends?
Which variables are responsible for class separations?
How do new variables behave?

6.4. Extensions and future outlook

Systems biology seeks to integrate information from multiple parts of a biological
system in a holistic attempt to understand the whole system. A major concern is
how to actually integrate multiple blocks of data, for example understand the rela-
tion between a data table X (e.g. a set of NMR spectral profiles) and another data
table Y (e.g. a set of GC/MS resolved profiles). Current pattern recognition methods
based on PLS methods, artificial neural networks, canonical correlation, support
vector machines, and so on, all lack the proper model structure to describe these
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types of data structures, because they focus only on the X-Y correlation overlap
and not on the non-overlapping variation (e.g. Y -orthogonal and X-orthogonal),
which, in a biological sense, can be of equal interest. This is a fundamental
problem as we certainly can not expect that all variation in NMR and GC/MS
profiles co-vary. Here, the OPLS method and extensions thereof represent a good
alternative.

6.4.1. Extensions of the OPLS model

The OPLS model structure can be extended to include X-orthogonal variation
[36, 37]. The OPLS model then comprises of three sets of components representing

(i) the joint X–Y variation (given by the TpPp and UpCp components)
(ii) the Y -orthogonal �ToPp

T � variation
(iii) the X-orthogonal �UoCo

T � variation (Figure 6.19).

Model of X� X = TpPp
T +ToPo

T +E

Model of Y� Y = UpCp
T +UoCo

T +F

E and F are the residual matrices of X and Y respectively. This can also be extended
to more than two data tables, see for instance Reference [56], hence it nicely fits
into a systems biology framework.

On the left, the Y -orthogonal components are shown, while on the right the
X-orthogonal components are illustrated. In the middle section the predictive
components are determined and the correlation between the two matrices are
calculated.

Y-orthogonal variation
X/Y joint variation X-orthogonal variation

Symmetric/~
PCA comp

T0P0
T

Pp
T

Tp Up YX

Cp
T

U0C0
T

Figure 6.19. A graphical overview of the OPLS model where also the X-orthogonal variation is
modelled. The Y -orthogonal variation �ToPo

T � represents the unique, non-overlapping variation in X,
conversely, the X-orthogonal variation �UoCo

T � defines the unique systematic variation in Y . The
X/Y joint variation (overlapping between X and Y ) is given by the �TpPp

T �UpCp
T � components. This

OPLS model structure is bi-directional, meaning that the model can be used for predictions in both
directions.
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6.4.2. Batch modelling

Batch modelling [26] is routinely being used for analysis of industrial batch process
data. A batch process has a finite duration in time, in contrast to a continuous process.
By analogy, batch modelling methods are used in metabonomic studies to model the
time dependency or dynamics of biological processes, for example the evolution of
the effects of a toxic substance in rats. Data collected from such studies produce a
three-way data table where each dimensionality represents objects (e.g. rat urine or
plant extract samples), variables (e.g. NMR shifts, m/z) and sample time points (see
Figure 6.20). Batch modelling is based on modelling two levels, the observation
level and the batch level. The observation level shows the dynamics of the biological
process of each object over time, see Figure 6.16. For multiple objects (e.g. control
rats), it is possible to establish an average trajectory with upper and lower limits
based on standard deviations. These indicate the normal development of the object,
for example control rats. The established control charts from the model can be used

Rat 1 

Rat 2 

Rat N 

NMR shifts

Biofluid
samples

Biofluid
samples

Biofluid
samples

Y = Dynamics

PLS

Figure 6.20. In batch modelling, the data is organized as an X-matrix containing blocks of rows where
each block represents an object (e.g. a rat). Each row in a block represents the multivariate profile of
an observation (e.g. the NMR spectral shifts) at a specific time point. The corresponding row in the
Y -matrix contains the dynamics (e.g. the time point). This is followed by an PLS or OPLS model to
extract variation from the X matrix related to the dynamics of the system.
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Figure 6.21. Batch control charts can be constructed from a PLS or OPLS batch model score vectors.
The average score trajectory (for each component) with upper and lower control limits (based on
standard deviations) indicates the normal dynamic trajectory for a batch. The control chart can be used
for detecting deviations from normality.

to monitor the development of new objects and is used to detect deviations from
normality, for example effect of a toxin or drug. Observed deviations from normality
can be interpreted by means of contribution plots. Batch modelling is based on the
assumption that a control group of objects is followed over the same time period
as the treated group. Batch control charts can be constructed from a PLS or OPLS
batch model score vectors. The average score trajectory (for each component) with
upper and lower control limits (based on standard deviations) indicates the normal
dynamic trajectory for a batch. The control chart can be used for detecting deviations
from normality (see Figure 6.21).

6.4.3. Hierarchical PCA

The idea behind hierarchical PCA is to block the variables in order to improve
transparency and interpretability [57–59]. This method operates on two or more
levels, and on each level standard PCA scores and loading plots as well as residuals
and their summaries such as DModX are used for interpretation. The procedure can,
for two levels, be described as follows (see Figure 6.22). In the first step, in this
case is to divide the large matrix into conceptually meaningful blocks and make a
separate PCA for each matrix. In the next step the principal components (scores T )
from each of these models become the new variables (“super variables”) describing
the systematic variation from each block. In the final step a PCA model fitted to
this data and the hierarchical PCA model is established, see Figure 6.22.

The interpretation of a hierarchical model has to be done in two steps. First, the
loading plots of the hierarchical model reveal which of the blocks that are most
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Upper level (super variables)

Lower level (base)

Data matrix divided into blocks

A B D GC E F

A B C D E GF

Figure 6.22. H-PCA is shown from the bottom to the top. At the bottom of the figure, the data matrix is
divided into blocks. A separate PCA model is calculated for each block and the PCA score components
from each model are then combined to form a new matrix, summarising all blocks. This new block of
data is then analyzed by a PCA.

important for any groupings that can be seen in the hierarchical score plot. Second,
the loading plots for the blocks of interest are studied on the lower level and in the
corresponding loading plot the original variables of importance can be identified.
The Hierarchical PCA is easily extended to one type of hierarchical PLS or PLS/DA
by adding a Y (response/discriminate) matrix on the upper level. The interpretation
is done in analogy with PLS or PLS/DA on the upper level and as in H-PCA on the
lower level.
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